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INTRODUCTION

Fractals are geometrical sets that are diffi-
cult to describe by classical geometry because of 
their high irregularity (Mandelbrot, 1975). Their 
main features cover self-similarity, fine struc-
ture at arbitrarily small scales, intricate detailed 
structure, recursive procedure of construction and 
size not quantified by the usual measures – e.g. 
length (Falconer, 1990). Many fractal patterns, 
especially occurring in nature, are not identical 
at all scales and their self-similarity is not exact. 
Such fractals are characterized by statistical or 
quasi self-similarity (Falconer, 1990, Hassan and 
Kurths, 2002, Barnsley et al., 2005).

A basic property of a fractal is its dimen-
sion. In contrast to Euclidian geometry, in fractal 
geometry, dimension is a measure of the space-
filling capacity of a set and can be a non-integer. 

Moreover, a wide variety of definitions of fractal 
dimension was introduced. One of the most pop-
ular dimensions is the box-counting dimension, 
defined as (Falconer, 1990, Peitgen et al., 1997, 
Kudrewicz, 2015):

𝐷𝐷𝑏𝑏(𝐹𝐹) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝛿𝛿(𝐹𝐹)
− 𝑙𝑙𝑙𝑙𝑙𝑙 𝛿𝛿  (1)

where: F – non-empty bounded subset of n-di-
mensional Euclidian space,

 𝐷𝐷𝑏𝑏(𝐹𝐹)  – box-counting dimension of F,
 𝑁𝑁𝛿𝛿(𝐹𝐹) 

 
– the smallest number of sets of 

diameter at most δ
 
which can cover F.

Fractal structures have been implemented in 
almost all areas of human activity since they were 
introduced to science by Mandelbrot (1982). For 
the last 10 years, the interest in fractal geometry 
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ABSTRACT
Fractals are self-similar sets that cannot be easily described by classical geometry. Fractal sets have been imple-
mented in almost all areas of human activity since they were introduced to science by Mandelbrot in 1982. For 
the last 10 years, the interest in fractal geometry has increased by the issues connected with water distribution net-
works (WDNs). The aim of this paper was to review the application of fractal geometry in designing and operating 
WDNs. Treating a WDN as a fractal pattern enables its description and classification, simplifies the assessment of 
a network reliability, helps to solve the problems of routing and dimensioning WDN, as well as enables to select 
the places to locate measurement points in a network to control water quality, pressure in pipes and water flow rate. 
Moreover, the application of tree-shaped fractal patterns to reflect WDNs helps to solve the problems of their opti-
mization. Fractal geometry can be also applied to investigate the results of WDNs failures connected with leakage 
of water to the ground. Using fractal dimension of a pattern created by points reflecting places of water outflow on 
the soil surface after a prospective pipe breakage enables to determine the zone near a pipe, where the outflow of 
water on the soil surface is possible. It is an important approach for the security of humans and existing infrastruc-
ture. Usage of fractal geometry in description, optimisation and operation analysis of WDNs still continues, which 
confirms the efficiency of fractal geometry as a research tool. On the other hand, it can be supposed that fractal 
geometry possibilities have still not been fully used.

Keywords: water distribution network, fractal features, tree-shaped pattern, fractal dimension 



Journal of Ecological Engineering  Vol. 21(6), 2020

230

has increased by issues connected with water dis-
tribution networks (WDNs). This paper reviews 
applying fractal geometry in designing and oper-
ating WDNs. 

Networks as tree-shaped structures

Tree-shaped structures are constructed by a 
sequence of affine transformations of an initial 
line segment. The process of construction can be 
described by the recursive formula (Kowalski, 
2011):

{
 

 
 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝐿𝐿0,

𝐿𝐿𝑖𝑖+1 → {
𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖,  𝛼𝛼′
𝑏𝑏 ∙ 𝐿𝐿𝑖𝑖, 𝛼𝛼′′
𝑐𝑐 ∙ 𝐿𝐿𝑖𝑖, 𝛼𝛼′′′

 (2)

where: Li – length of i-th line segment 
(i = 0, 1, 2, …),

 a, b, c – coefficients of line segments 
length generated in i + 1 step, 

 α’, α’’, α’’’ – angles characterizing location 
of line segments generated in i + 1 step in 
relation to the previous segment, wherein 
one endpoint of each new generated seg-
ment connects to the endpoint of previous 
line segment.

Assuming that a = b = c and α’ = –α’’’, α’’= 0
 Eq. (2) describes symmetrical tree-structure, con-

structed as given in Fig.1.
WDNs can be reflected by tree-shaped struc-

tures; however, the following assumptions are 
suggested (Kowalski, 2011):
 • lengths a, b, c and angles α’, α’’, α’’’ can take 

random values depending on a layout of the 
streets (which also can be treated as tree-
shaped structures – Bejan, 1996),

 • a line segment ceases to be transformed, if a, b 
or c equals 0,

 • an intersection of different line segments of the 
structure creates a new junction – one of the 
line sections with endpoint in the junction be-
comes an initiator for the next transformations,

 • in the case of multi-supplied networks, each 
pipe supplying a network should be treated as 
independent initiator. 
Considering the above assumptions, it is pos-

sible to reflect the branched, looped and mixed 
branched and looped networks, both single- and 
multi-supplied, by a tree-shaped structure accord-
ing to Eq. (2) (Fig. 2). 

It was verified that tree-shaped WDN can be 
treated as fractal set (Kowalski, 2011). The box-
counting dimension according to Eq. (1) for the 
network presented in Fig. 2 equals 1.087 if the 
sets covering the network are cubes or 0.870 if the 
sets are closed balls (Kowalski, 2011). 

In some investigations, it is enough to re-
flect the WDN as a theoretical simplified pat-
tern – e.g. regular tree-shaped structure (Fig. 3), 
following the assumption that the points where 
water is supplied are regularly displayed on a 
rectangle surface. An initiator can be of different 
form  – not only a line segment. An example of 
tree-shaped WDS structure with X-shaped initia-
tor is given in Figure 4.

An interesting approach to the fractal fea-
tures assessment of the existing WDNs follows 
the box-covering algorithm for unweighted com-
plex networks, previously reported in literature 
(Song et al., 2005, 2006, 2007, Kim et al., 2007, 
Gao et al., 2008). A network (structure F accord-
ing to symbols used in Eq. (1)) is treated as a 
fractal if the regression line for log (Nδ(F)) and 
log (δ) is linear. The slope of the line denotes a 
fractal dimension Db defined by Eq. (1). This ap-
proach works well for different WDNs. Diao et 
al. (2017) investigated six real world WDNs this 
way and proved the existence of fractal patterns 

Fig. 1. Two stages of symmetrical tree-structure construction (Kowalski, 2011)
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in all cases. The WDNs were different according 
to size, shape and complexity – consisting of 21 
to 2465 links. Di Nardo et al. (2018) investigated 
two Italian networks similar to each other ac-
cording to length (about 33 km) and number of 
links (about 260), but different according to shape 
(elongated and compact), which also revealed 
fractal features. Vargas and Saldarriaga (2019a, 
2019b) proved the fractal properties of three dif-
ferent networks located in Colombia; however, 
they used the box-covering algorithm for weight-
ed complex networks (Newman, 2004, Wei et al., 
2013). The topology and hydraulic criteria were 
used to calculate the weight of each node of the 
network. The largest values of the fractal dimen-
sion were obtained with the topology weight 
criterion and there was no clear influence of the 

proposed hydraulic criteria on the fractal dimen-
sion results for the analysed WDNs (Vargas and 
Saldarriaga, 2019a). 

Applications of water networks fractal 
features 

Treating a WDN as a fractal pattern offers 
new opportunities for investigators, designers 
and operators of water distribution systems. One 
of the basic applications of the WDN fractal fea-
tures is complementing the existing classification 
of water network structures, which specifies open 
systems – branched and radial, closed systems – 
looped and ring-shaped, as well as mixed systems 
(Mielcarzewicz, 2000). So far, this classification 
has been supplemented by 2 parameters clearly 

Fig. 2. Three stages of the tree-structure construction reflecting branched and looped network 
with three sources of water (Kowalski, 2011)

Fig. 3. Scheme of regular tree-structure constructions reflecting WDS (Azoumach et 
al., 2012): a) with Y-shaped branches (1st stage), b) with Y-shaped branches (2 stages), 

c) with T-shaped branches (1st stage), d) with X-shaped branches (1st stage)
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characterizing WDN: total length of pipes and 
length of pipes in relation to the supplied area. 
These parameters allow differentiating the WDN 
systems specified in the classification by clear 
numerical values, but do not allow recognising 
the similarity of systems differing by scale only. 
For this purpose, the fractal features of WDNs 
are helpful. The value of a WDN box-counting 
dimension increases along with the complexity of 
systems and is constant for similar systems differ-
ing by scale of submitting. Thus, the WDN box-
counting dimension characterises a network bet-
ter than pipes length divided by supplied area and 
can be treated as a parameter complementing the 
existing WDNs classification (Kowalski, 2011).

A box-counting dimension of a WDN geo-
metrical structure can be also used for initial 
estimating reliability of water network struc-
tures. The relation between the dimension and a 
number of minimal efficiency paths (Kansal and 
Devi, 2007) was noticed during the analysis of 4 
different models of WDNs and 3 actual WDNs 
(Kowalski, 2011). Although the number of ana-
lysed networks was insufficient to ascertain the 
functional dependence between these parameters, 
on the basis of the conducted investigations, a 
box-counting dimension was proposed for use as 
an indicator allowing to approximate evaluation 
of certainty of water delivery, especially for the 
analysis of complex WDNs structures. 

Another way of using the WDNs fractal fea-
tures to access the reliability of water network 
structures was presented by Di Nardo et al. (2018), 
who investigated the relationship linking the fractal 
and topological metrics of a WDN to its resilience 
to the failure of a pipe. The weighted APL (average 

path length), with the inverse of pipe diameter 
as weight, was introduced as a novel topologi-
cal metric allowing to identify, without hydraulic 
simulations, the most important pipes and paths, 
the failure of which would significantly worsen the 
WDN operating conditions (Di Nardo et al., 2018). 
It is important that the APL is proportional to the 
number of nodes in the network treated as a frac-
tal structure, raised to the power of inverse of the 
network fractal dimension (Csányi and Szendrői, 
2004, Di Nardo et al., 2018).

Reliability in terms of the WDNs fractal fea-
tures was also the subject of investigations by 
Zeng and Li (2013). They generated WDNs as 
fractal structures consisting of several basic pat-
terns with different level of reliability and inves-
tigated the relationship between the reliability of 
basic patterns and the whole networks. The reli-
ability of the whole network occurred consistent 
with the basic patterns composing it.

On the basis of fractality of different WDNs, 
Diao et al. (2017) developed a criticality analysis 
method to more efficiently identify all the critical 
pipes in WDNs than the traditional method. A pipe 
is regarded as critical if a loss of the pipe causes at 
least 10% of water supply shortage. During inves-
tigations, similar patterns of pipe criticality were 
observed both at different scales and at different 
parts of the WDN. This fractal-based observation 
allowed simplifying the analysis of WDNs.

Fractal features of WDNs and a box count-
ing dimension were used by Zeng et al. (2017) 
to investigate the complex network model, which 
was developed following the combination of lo-
cal optimization rules and engineering consider-
ations. The simulation results indicated that the 

Fig. 4. Scheme of tree-structure construction reflecting WDS with X-shaped initiator and water inlet in the 
middle of rectangular area (Pauliuk et al., 2014)
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efficiency of WDNs is exponentially affected by 
the urban growth pattern.

The possibility of reflecting networks geo-
metrical patterns by fractal tree-shaped structures 
was the basis of a new method for routing and 
dimensioning WDNs. The method uses the recur-
sive procedure of fractal structure construction, 
minimal efficiency paths and modified Murray’s 
law rule (Murray, 1926a, b). The method was ef-
fective both in the model network, and under the 
actual conditions (Kowalski, 2011). Moreover, 
the TRAS software – a tool for routing distribu-
tion networks, was designed by Suchorab and 
Kowalski (2019). The TRAS software has a hy-
brid character and was written in AutoLISP and 
C++ programming languages, applying elements 
of fractal geometry and graph theory.

The WDNs fractal dimension can be used 
as a scaling factor indicating the network topo-
logical changes, depending on the scale in which 
the WDN is analysed (Vargas and Saldarriaga 
2019a). Another application of the WDNs fractal 
dimension proposed by Vargas and Saldarriaga 
(2019b) is to identify the possible district metered 
areas (DMAs) in WDNs. By using the hydraulic 
criteria in the method’s node weight calculations, 
the tests on three WDNs were carried out in or-
der to establish the possible divisions into DMAs. 
The divisions were evaluated using the modular-
ity index. The divisions obtained on the basis of 
the box covering algorithm using to calculate the 
fractal dimension were characterised by relative-
ly high modularity, but lower than obtained with 
community detection. Divisions with relatively 
high modularity were obtained using the box cov-
ering algorithm, so the proposed method can be 
treated as a feasible alternative for identifying the 
potential divisions into DMAs in intricate WDNs.

The important issue for proper WDN operat-
ing is the system monitoring including the control 
of water quality, pressure in the pipes and water 
flow rate. The selection of places for locating the 
measurement points in a network is complex and 
problematic because of many reasons, e.g. quasi 
chaotic character of WDNs geometrical structure. 
In practice, this location has usually been imposed 
by the WDNs’ operators; however, such a method 
does not meet a criterion of representativeness 
(Kwietniewski et al., 2005, Grzenda et al., 2010). 
A new proposal of measurement point location is 
based on fractal geometry. It uses the observation 
scale and recursive procedures. A departure from 
the Euclidian geometry rules enables to achieve 

universalism – possibility of application both in 
small, as well as large and complex WDN (Kow-
alski et al., 2015).

Another opportunity derived from WDN frac-
tal features is facilitation of solving problems of 
WDN optimisation. Applying the tree-shaped 
fractal patterns to reflect WDN helps to find the 
best diameters scaling laws and optimal angles 
that minimise the total water head losses to the 
overall water residence time (Azoumah et al., 
2012). Moreover, in the construction of WDN as 
a tree-shaped pattern, the method of exergy de-
struction minimisation is equivalent to minimis-
ing mechanical irreversibility under a water qual-
ity constraint (Bieupoude, et al., 2011).

Application of fractal sets in 
investigations of water pipe failures 

Failures and breakages occur in WDNs all 
over the world (e.g. Ben-Mansour et al., 2012, 
Bakker et al., 2014, Berardi et al., 2014), creating 
not only onerous problems of water and financial 
losses for WDN exploiters (e.g. Eliades and Poly-
carpou, 2012, Deidda et al., 2014, Kutyłowska 
and Hotloś, 2014, Iwanek and Suchorab, 2017) 
but also the social and environmental risk con-
nected with possibility of creation of empty spac-
es below the soil surface by the water flowing 
out from a damaged pipe under pressure (Iwanek 
et al., 2017, Kadetova et al., 2007, Khomenko, 
2009). The empty spaces are dangerous especial-
ly in urban areas, because they can cause depres-
sions or holes on the soil surface, threatening the 
vehicles on roads, existing infrastructure or even 
human life. One of the methods for limiting the 
adverse consequences of the accidents of this kind 
is to establish a protection zone on the soil surface 
over a buried water network, where the outflow 
of water is possible after a prospective failure of 
the pipe (Iwanek, 2018). Infrastructure and settle-
ment in this zone should be carefully planned in 
order to exclude the possibility of diminishing the 
stability of objects as well as to limit social, finan-
cial and environmental costs in the case of water 
leakage from a pipe.

The water flow in soil after the breakage of 
a pressure water pipe is a complex phenomenon 
depending on many parameters, often connect-
ed with each other and varying in time or space 
(Iwanek and Suchorab, 2017), so the issue of 
the protection zone determination is challeng-
ing. The fractal dimension of a pattern created 
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by the points reflecting places of water outflow 
on the soil surface after a prospective pipe break-
age turned out to be a useful parameter. Iwanek 
(2018) proved that the location of points reflect-
ing places of water outflow on the soil surface is 
random and the points create a structure meeting 
conditions which are characteristic for approxi-
mate fractals. On the basis of the points locations 
data obtained from the laboratory tests and the 
Monte Carlo simulations, a method for determin-
ing the representative structure was elaborated 
and the formula for the protection zone radius 
was determined as (Iwanek, 2018):

𝑅𝑅𝑓𝑓𝑓𝑓−𝑔𝑔𝑓𝑓 = (𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿→0

𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝛿𝛿(𝑊𝑊𝑁𝑁)
− 𝑙𝑙𝑙𝑙𝑙𝑙 𝛿𝛿 ) ∙ 𝑙𝑙𝑚𝑚𝑚𝑚

1≤𝑖𝑖≤𝑛𝑛𝑤𝑤 𝑔𝑔𝑔𝑔
{(𝑅𝑅𝑤𝑤)𝑖𝑖|𝑙𝑙 ∈ ℕ} 

𝑅𝑅𝑓𝑓𝑓𝑓−𝑔𝑔𝑓𝑓 = (𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿→0

𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝛿𝛿(𝑊𝑊𝑁𝑁)
− 𝑙𝑙𝑙𝑙𝑙𝑙 𝛿𝛿 ) ∙ 𝑙𝑙𝑚𝑚𝑚𝑚

1≤𝑖𝑖≤𝑛𝑛𝑤𝑤 𝑔𝑔𝑔𝑔
{(𝑅𝑅𝑤𝑤)𝑖𝑖|𝑙𝑙 ∈ ℕ} 

(3)

where: Rw – horizontal distance between a place 
of leakage in a pipe and one of points cre-
ating a representative structure, reflecting 
place of water outflow on the soil sur-
face [m],

 nw gr
 
– number of points reflecting places 

of water outflow, creating a representative 
structure,

 ℕ – set of natural numbers, other symbols 
according to Eq. (1).

CONCLUSIONS

Many water networks display attributes of 
approximate fractals. Fractality of WDN struc-
tures provides a new perspective for understand-
ing WDNs complexity and therefore for better 
description, optimisation and more effective op-
eration analysis of WDNs. The fractal-based tools 
for classifying WDNs, estimating their reliability, 
routing and dimensioning networks, identifying 
DMAs in WDNs, selecting the places for locat-
ing measurement points, solving the optimization 
problems as well as establishing a protection zone 
in case of water pipe failure, have been developed 
for the last 10 years. So many different applica-
tions developed in relatively short period as well 
as different approaches to the fractal properties of 
WDNs confirm the possibilities and usefulness of 
the fractal-based research tools.

The research on using fractal geometry in de-
sign processes, maintenance, operational control 
or optimization of WDNs is still continued, what 

is important for designers and operators of all wa-
ter distribution systems. However, it can be sup-
posed that the fractal geometry possibilities have 
still not been fully recognized.
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